Quantum Cryptography: A Boon for Security
Quantum Cryptography: A Boon for Security
Keeping secrets will be easier, but that’s not all.
By Arthur Herman —
March 10, 2017
The most recent WikiLeaks document dump regarding the CIA
has made it clear that it’s getting harder and harder to keep secrets in the
digital age.
If the CIA — or foreign intelligence services like
Britain’s — aren’t eavesdropping on our conversations by surreptitiously
turning on our Samsung TVs or hacking into our supposedly encrypted smart
phones (and disguising themselves as Russian hackers while they’re doing it);
if actual Russian and Chinese and North Korean hackers aren’t burrowing through
one firewall after another in our corporate or government networks; then we
have rogue insiders like Edward Snowden, former Sergeant Manning, and very
possibly whoever sent these 9,000 CIA documents to WikiLeaks, feeling free to
expose mounds of classified documents to public scrutiny whenever they feel
like it, on the rationale that it’s more ethical for you as a citizen of the
world to endanger your nation’s security than to protect it as you are legally
required to do.
No one can be very shocked that the CIA, or any other spy
agency, has the capabilities the WikiLeaks documents allege that it does.
What’s shocking is that we didn’t find out sooner. In an intelligence community
that has become populated by rogue whistleblowers (or, as the Michael Flynn
case suggests, rogue employees on a vendetta) and in which our most trusted and
guarded information networks have become extremely porous, the mission motto of
the 1992 Robert Redford movie Sneakers — “No More Secrets” — may be coming to
pass before our eyes.
Fortunately, however, there is a silver lining to all
these dark shadows.
That’s the advent of quantum cryptography, which uses
quantum mechanics, instead of digital algorithms, to encrypt data. The data
will then be forever immune from hackers or malware makers; the only users who
will see it will be you and whoever you are sending it to or sharing it with.
Big Brother’s data may finally be safe; but so will your data, from an
unauthorized Big Brother.
How does quantum cryptography work? Since the late 1940s,
standard digital computing has relied on the same binary linear sequence of the
numbers 1 and 0 to encode, transmit, and then read messages via electricity.
The process has gotten faster over the last 70 years, thanks to the transistor,
the microchip, and using more and more conducive media through which to send
the electrons. But ultimately the electronic digital process that ENIAC used to
do computations for the Army during the Truman administration is still the same
as the one that runs your smart phone — or the world’s biggest supercomputer.
Quantum computing turns to the electron’s smaller nuclear
cousin, the quantum, to transmit message data. That eliminates the need for the
traditional 0-1 linear sequence; instead a quantum bit can be both a zero and a
one at the same time. That not only exponentially speeds up the transmission
process; it means interrupting the linear process. The opening for traditional
hacking techniques vanishes in an uncertain haze. Is a bit a zero or one? Only
its programmer, and receiver, knows for sure.
A metaphor helps here. Think of the standard Internet
server as the equivalent of a telephone landline; a hacker can tap it like an
eavesdropper who taps the wire to listen in on a conversation.
With quantum cryptography, the intrusion of another
listener snaps the cable. The sender and receiver know at once that the
connection has been severed, and why. Hacking has become an exercise in
futility; sender and receiver are able to communicate in confidence, knowing
that their connection defies any intrusion from unwanted guests.
Quintessence Laboratories in Australia is just one of the
companies involved in quantum cryptography that say that a commercially viable
version of quantum cryptography will be available in 18 months or two years —
creating a virtually unhackable cyber universe.
That’s the good news, that quantum cryptography can
either be installed directly on devices, which revolutionizes the Internet of
Things, or be accessible in the quantum cloud.
The bad news is the same quantum principles will also
revolutionize computing itself in another decade or less. It will turn even our
most advanced current systems into today’s equivalent of TVs with rabbit ears.
(If you aren’t old enough to know what those are, you can ask your
grandmother.) Quantum computing will rip through any and all conventional
algorithms for encryption literally in less than a blink of an eye.
The challenge is that the instability of quanta that
makes quantum cryptography so effective makes quantum computing — i.e.,
transforming the entire digital universe into a quantum-driven cyber sphere —
daunting. Nonetheless, other countries are trying. The Chinese are already
feverishly working to achieve the first big breakthrough in quantum computers;
so are the Europeans.
This is the Next Big Thing in information technology. As
with all technological revolutions, it has two sides — one positive, one
negative. It will shut some doors we all want shut, and eventually will open
others we’d all prefer shut. We can’t let current scandals distract us from
preparing for the brave new world to come, and taking a clear-eyed look before
making the Quantum Leap.
— Arthur Herman is a senior fellow at the Hudson
Institute. His most recent book, Douglas MacArthur: American Warrior, was
published in June.
Comments
Post a Comment