Mind-reading technology is everyone's next big security nightmare
Mind-reading technology is everyone's next big security
nightmare
Mind-reading technology is about to go mainstream. Are
your thoughts at risk?
By Jo Best | October 15, 2019 -- 11:30 GMT (04:30 PDT)
Technology allowing our thoughts and feelings to be
translated into a digital form – and shared – is already a reality. Brain
computer interfaces (BCI) allow us to connect our minds to computers for some
limited purposes, and big tech companies including Facebook and many startups
want to make this technology commonplace.
The AI and ML deployments are well underway, but for CXOs
the biggest issue will be managing these initiatives, and figuring out where
the data science team fits in and what algorithms to buy versus build.
For those of you terrified by the prospect of technology
recording – and broadcasting – your opinions of the boss, your secret fears, or
anything else – relax.
At least, for now.
BCIs are currently not sophisticated enough to collect
such granular information. The data they can gather is more based around
measuring the physical movements people want to make or their emotional state.
But, as machine-learning algorithms become more sophisticated and BCI hardware
becomes more capable, it may be possible to read thoughts with greater
precision.
There are currently two approaches to connecting up the
human brain to external computing systems, invasive and non-invasive.
Non-invasive systems read neural signals through the
scalp, typically using EEG, the same technologies used by neurologists to
interpret the brain's electrical impulses in order to diagnose epilepsy.
Non-invasive systems can also transmit information back into the brain with
techniques like transcranial magnetic stimulation, again already in use by
medics.
Invasive systems, meanwhile, involve direct contact
between the brain and electrodes, and are being used experimentally to help
people that have experienced paralysis to operate prostheses, like robotic
limbs, or to aid people with hearing or sight problems to recover some element
of the sense they've lost.
Clearly, there are more immediate hazards to invasive
systems: surgery always brings risks, particularly where the delicate tissue of
the brain is concerned. So given the risks involved, why choose an invasive
system over a non-invasive system – why put electronics into your grey matter
itself? As ever, there's a trade-off to be had. Invasive systems cut out the
clutter and make it easier to decode what's going on in the brain.
Non-invasive systems use the likes of EEG to read brain
activity, which need millions of neurones acting in sync with each other to
give a usable idea of what's going on in the brain by creating a large enough
electrical field that can be detected outside the surface of the scalp. But
it's a very crude measure.
"It's the equivalent of standing outside a football
stadium and trying to work out what's going on in the game just by listening to
the cheers. You can get a picture of some of the big events, but it's difficult
to get fine-grained information," says Ian Daly, lecturer at the
University of Essex's School of Computer Science and Electronic Engineering.
Invasive systems, however, are in direct contact with the
neurones – so even though they may only gather a signal from a hundred
neurones, that signal is clear enough to give an insight into the thought
process travelling through it.
Take Ian Burkhart, a man with paraplegia who regained
some function of arms using a neurosleeve and software by Canadian BCI company
Battelle, as well as a Utah Array implanted into his brain. Typically, the
thought required to move an arm is the job of thousands of neurones; Burkhart
can move the Battelle system with just a few tens of neurones after training
himself to use the system. "Our brain has 98 billion neurones, the motor
cortex has 1.2 billion responsible for hand or limb movements. We are recording
from less than 100," says Gaurav Sharma, senior research scientist at
Battelle.
To date, most uses of invasive systems have been aimed at
helping people with paralysis to move their limbs once again; the greater risks
of invasive systems can be worth the payoff for them.
As such, for consumer-tech applications, the short to
medium term future of BCIs is likely to be non-invasive.
While non-invasive systems may not match the accuracy of
their invasive counterparts, there are new technological avenues opening up
that could help researchers level-up non-invasive systems. For example,
progress in machine learning is helping scientists better separate the signals
from the noise, meaning the accuracy of non-invasive systems will only increase
in future.
As well as software improvements, additional scanning
types are beginning to be used by BCI systems: focused ultrasound and
transcranial direct-current stimulation, for example, might offer a new way to
read brain signals.
Others believe that existing non-invasive technologies
can deliver the same brain-reading capabilities as invasive systems – at least
when it comes to motor control.
New York-based CTRL Labs for example uses EMG
(electromyography), which reads the electrical activity in skeletal muscle and
is used by neurologists to detect nerve performance in the limbs and elsewhere.
CTRL Labs makes wrist bands that measure electrical impulses, known as action
potentials, in neurones within muscles, and models them in software. When you
move your hand, the CTRL Labs system translates that as a hand movement,
including its direction, strength and type. It was acquired by Facebook earlier
this month.
"We believe that if what you're interested in doing
is control you can get all the signal you want and get it more easily through
non-invasive means", Adam Berenzweig, head of R&D at CTRL Labs, told
ZDNet earlier this month.
"The signal you want is available on surface EMG if
you do it well enough, and more than that, the signal is easier to get because
in the cortex, all the billions of neurones in the brain are interfering and
are noise," says Berenzweig. So if all you're interested in is picking up
movement signals from the brain, in most people, non-invasive systems might
still do the trick.
While invasive systems will continue to be used by those
with the greatest amount to gain from BCIs, such as people with spinal injuries
or neurological conditions like Parkinson's disease, broader uptake among
consumers is likely to be concentrated on non-invasive systems.
Because reading signals from the brain through the scalp
requires direct contact between the skin and the electrodes, it makes unwanted
reading of anyone's thoughts at source unlikely and highly noticeable – you'd
expect most people would be aware of a stranger unexpectedly touching their
head, especially with a set of electrodes. Mind reading at source would be too
easy to detect.
That said, once the data is collected by BCI and passed
on to other software, it's just as secure as any other set of information. In
the wake of many, many data breaches it's clear there are no guarantees that
sensitive information is better protected than other kinds of data.
Finding out that your information has been accessed by a
data breach is never pleasant, but that someone could have been browsing your
thoughts patterns or emotional states? It doesn't bear thinking about.
Comments
Post a Comment